Autonomy++

Autonomy++

Persistent Autonomy means going beyond what has been done before. PANDORA is creating a new class of AUVs that keep going under extreme uncertainty. AUVs that respond to system faults by doing what they can. AUVs that generate their own missions when idle. AUVs that act appropriately under unexpected environmental challenges.
Humankind needs a new class of underwater vehicle to address the new challenges that deep sea exploration and mechanization create. A PANDORA AUV constantly replans, continuously questions its assumptions, and adjusts its skills to fit its immediate environment.

World Class Consortium
World Class Consortium

World Class Consortium

Leading academics are collaborating to integrate the very best in underwater vehicle design, real time planning, robust control, mapping and online skill adaptation.
Five Universities are coordinating as part of the EU FP7 program, with industrial oversight provided by BP, SubSea7 and SeaByte. Pandora will be innovating by using an agile distributed integration model. Systems will incrementally developed, tested and deployed across Europe continuously.

Field Trials

Field Trials

Pandora is a three year project with major technology demonstrations scheduled. The three tasks are:
1. Hull inspection
2. Anchor chain cleaning
3. Valve operation
These demonstrations will occur at facilities in Scotland or Spain. A critical performance metric is the infrequency of engineer intervention. These difficult tasks are currently carried out by skilled ROV operators at great expense, and are not always successful.

Latest
Jan 23

Testing planning capabilities with Girona 500 AUV

Researchers from KCL visited UdG between the 17th and 24th of January, successfully completing work on integrating the controllers of the valve turning scenario into the planning architecture. This involved running the scenario many times during the week, with the Girona 500 AUV.

The scenario begins with a panel, hidden somewhere in the sparsely decorated pool. The AUV is given a set of coordinates at which the panel might be. The planner directs the AUV to search for the panel, move close to inspect the valves, detect their orientation, and finally to turn the valves to the correct configuration.

The architecture was modeled to be robust — replanning when new information is discovered, or the environment does not meet expectations. This means that when the valves do not turn as expected, the Girona 500 AUV would try again and again, grasping persistently with its end effector.

KCL + UdG Teams

During the week, the two teams met to decide how their collaboration should continue. The next steps will integrate planning with the chain cleaning scenario; further improve the valve turning scenario; and combine both to form a longer, more elaborate mission.

Jan 16

IIT and UdG work with new capabilities to perform a robust valve Turning

From the 28th of November to the 5th of December, researchers from Istituto Italiano di Tecnologia (IIT) came to the University of Girona (UdG) to do different tests to develop a successful valve turning.

NTUA, IIT and UdG  working at the CIRS facilities.

NTUA, IIT and UdG working at the CIRS facilities.

During this short period of time the two teams have worked together in two different tasks: First, the integration and testing of the new end-effector. Second, testing the Reactive Fuzzy Decision Maker (RFDM) to evaluate the safety of the valve turning.

New end-effector designed to improve the quality of the grasping and equipped with a camera in hand and a Force Torque sensor.

New end-effector designed for the valve turning.

The new end-effector has been designed in three different parts: First the shape of the passive gripper to grasp the valve handle, second a camera installed inside the center of the end-effector to see the manipulated elementa and third a Force/Torque sensor to evaluate the quality of the grasping and the torque needed to turn the valve.

Valve turning scenario  with the perturbation system installed

Valve turning scenario with the perturbation system installed

An external thruster has been install in the valve turning scenario in order to add perturbations during the manipulation task. The perturbations effect the valve turning and thus allow to detect the parameters to evaluate the safety. Furthermore, the communication between the RFDM and the Learning by Demonstration reproductor has been tested.

Dec 17

NTUA and UdG teams working towards chain following

During the last week of November NTUA and UdG members put their efforts together to push forward the autonomous chain cleaning task of the PANDORA Project. To this end it is required to detect the chain links and follow them accurately.

NTUA and UdG teams working at CIRS for the chain following task

NTUA and UdG teams working at CIRS for the chain following task

UdG team provided a module that performs detections of chain links on the sonar imagery. The chain link detector has been designed to overcome the difficulties of performing object recognition on sonar data (such as the presence of noise, moving shadows or intensity alterations due to viewpoint changes). Taking as input the link detections, NTUA team developed a module that fits a curve through the multiple detections and groups them to obtain a waypoint at the center of each link. The last step that must be performed consists in concurrently follow the identified waypoints while performing new detections. Here, two problems were identified. First, the insonification area of the forward-looking sonar lies always several meters ahead of the vehicle, so the AUV must point on the direction of the last link while keeping its position over the current one. Second, if this two movements are not well coordinated the chain can easily drop off the sonar’s field of view since it is very narrow (30º).

ROS visualization while performing chain following

ROS visualization while performing chain following

These algorithms were tested in the UdG water tank using Girona 500 AUV equipped with the ARIS3000 sonar, over a mock up of a chain of 7 meters. Successful results were obtained in the link detection and path generation stages. For the following algorithm new strategies are under development.

Girona 500 AUV equipped with ARIS sonar over the chain scenario

Girona 500 AUV equipped with ARIS sonar over the chain scenario

Oct 13

Pandora @Oceans’13 San Diego, California

Great success of the Pandora project in San Diego, California, USA for the Oceans’13 conference, 23-26 September 2013, the biggest conference in oceanic engineering.

  • Pandora Special Sessions: The Pandora team presented seven papers, grouped into two dedicated sessions. The room was always full, with many questions showing interest from the different researchers attending the conference.
  • Speakers’ Breakfast: PANDORA Table for AUV Autonomy sessions!

  • Tali Hurtòs wins the Poster Competition: with a work focused on novel blending techniques for sonar mosaicing, in the framework of the Pandora project, Tali wins the 1st prize of the student poster competition. Congratulations !!!
  • The winning poster

The conference was very well attended with two exhibition halls, and several parallel technical tracks, and in-water demos at the harbour, being a unique possibility to showcase the Pandora project and its results.
Alongside the hard work, some time for an Hawaiian-style dinner at USS Midway was well deserved for the Pandora team:

Pandora team at USS Midway for Conference Gala Dinner (Hawaiian style)

Jul 29

Water Jet Control using the Girona500 AUV

From the 14th to the 21st of June, researchers from NTUA came to the University of Girona to do some tests with the Girona500 equipped with the manipulator.

Arnau Carrera (UdG), Narcís Palomeras (UdG), George Karras (NTUA) and Charalampos (Babis) Bechlioulis (NTUA) during the experiments in the UdG water tank
Arnau Carrera (UdG), Narcís Palomeras (UdG), George Karras (NTUA) and Charalampos (Babis) Bechlioulis (NTUA) during the experiments in the UdG water tank

During this period of time, the NTUA and UdG teams worked together and redesigned the control of the manipulator, obtaining a new, more precise and smooth controller. Additionally, the water jet was installed on top of the manipulator, and the control algorithm to keep the robot stable in front of the panel was improved, so as to be used while the water jet is working and being moved using the arm.

Jul 29

Teleoperated valve turning using Girona500 AUV

From the 3rd to the 7th of June, members of the team at IIT came to the University of Girona to do some tests with the Girona500 equipped with a manipulator.

Arnau Carrera (UdG), Matte Leonetti (IIT) and Nawid Jamal (IIT) during the experiments in the UdG water tank
Arnau Carrera (UdG), Matte Leonetti (IIT) and Nawid Jamali (IIT) during the experiments in the UdG water tank

In this short space of time, the two teams worked on integrating a haptic device to teleoperate the Girona500 AUV and the manipulator. Once the integration was completed, several trials were performed to demonstrate the task. These experiments have highlighted some weak points in the first theoretical approach and provides the opportunity to improve on this work.

There was also discussion relating to the integration of the force torque sensor, and a decision was made to add a camera to the hand on the manipulator. Furthermore, some experiments involving thruster failures in the Girona500 AUV were performed.

May 21

Postdoc opening in Machine Learning for Robotics


The Department of Advanced Robotics at the Italian Institute of Technology (an English-language research institute) is seeking to appoint a well-motivated full-time postdoctoral researcher in the area of machine learning applied to robotics in general, and in particular to Autonomous Underwater Vehicles (AUV).

The successful candidate will join an ongoing research project funded by the European Commission under FP7 in the category Cognitive Systems and Robotics called “PANDORA” (Persistent Autonomy through learNing, aDaptation, Observation and ReplAnning) which started in January 2012. The project is a collaboration of five leading universities and institutes in Europe: Heriot Watt University (UK), Italian Institute of Technology (Italy), University of Girona (Spain), King’s College London (UK), and National Technical University of Athens (Greece). Details about the project can be found at: http://persistentautonomy.com/

The accepted candidate will contribute to the development and experimental validation of novel reinforcement learning and imitation learning algorithms for robot control, as well as their specific application to autonomous underwater vehicles. The research will be conducted at the Department of Advanced Robotics within the “Learning and Interaction Group” with project leader Dr. Petar Kormushev.

The research work will include conducting experiments with two different AUVs (Girona 500 and Nessie V) in water tanks in Spain and UK in collaboration with the other project partners. The developed machine learning algorithms can also be applied to other robots available at IIT, such as the compliant humanoid robot COMAN, the hydraulic quadruped robot HyQ, the humanoid robot iCub, two Barrett WAM manipulator arms, and a KUKA LWR arm robot.

Application Requirements:

  • PhD degree in Computer Science, Mathematics or Engineering
  • Excellent publication record
  • Strong competencies in: machine learning, reinforcement learning, imitation learning
  • Good programming skills, preferably in MATLAB and C/C++
  • Experience in robot control and ROS is a plus

International applications are encouraged. The successful candidate will be offered a fixed-term project collaboration contract for the remaining duration of the project due to end in December 2014 with a highly-competitive salary which will be commensurate with qualifications and experience. Expected starting date is as soon as possible, preferably before September 1st, 2013.

Application Procedure:

To apply please send a detailed CV, a list of publications, a statement of research interests and plans, degree certificates, grade of transcripts, the names of at least two referees, and other supporting materials such as reference letters to: Dr. Petar Kormushev (petar.kormushev(at)iit.it), quoting [PANDORA-PostDoc] in the email subject. For consideration, please apply by June 21th, 2013.

For latest updates please check here.

Mar 25

Sonar mosaicing of chain scenario

After the first successful tests with the ARIS sonar, the UdG team worked towards reproduction of the chain scenario of PANDORA project. A chain of 13 links and a total length of about 7 meters has been built simulating a real mooring chain.

chain scenario

Reproduction of the chain scenario at UdG’s water tank.

Before the first year review of the project, we conducted some experiments inside the UdG water tank to simulate inspection of the chain by means of sonar.

Girona-500, equipped with ARIS, was manually teleoperated along the chain gathering images at a short range to generate afterwards an acoustic mosaic of high resolution.

The following video summarizes the mosaicing process of the sonar images:

The figure below shows the obtained full chain mosaic:

chain mosaic

Mar 25

Girona500 AUV performing a visual servo control

One of the demonstrations shown during the first year review was a visual servo control performed by Girona 500 AUV in front of a valve panel. This work has been carried out by the NTUA CSL group together with UdG. Three main algorithms work together to achieve this task: A visual detector identifies the valve panel and computes relative positions to it; an EKF-SLAM algorithm combines these updates with navigation sensor measurements to localize the vehicle while mapping the panel in the world. Finally, a control scheme navigates and stabilizes the vehicle in front of the detected target. The control scheme algorithm has been reported in a paper submitted at IROS 2013.

Feb 1

Robust Control and Wall Detection Experiment on Nessie VI

Pandora partners from NTUA visited HW Januarty 2013 to try their robust model based control system on Nessie VI. In addition to testing and tuning the algorithm which provides 5DOF waypoint control to the vehicle, HW took the opportunity to test newly developed sonar analysis software. The overall trial objective was to integrate independently developed systems into a coherent whole. The new sonar wall pose estimator was connected to the new NTUA control system to create a wall following behaviour.

HW has a large 20x20x7m wave tank which was used for the experiment. This facility has the nice capability of generating waves. We had hoped these waves could test the robustness of the controller under current disturbances. However, the waves energy is largely on the surface of the tank, so it is questionable as to whether this was a good test or not. Nevertheless, control and integration testing was a success, with both the NTUA and HW team managing to achieve all their goals for the 5 day period of wave tank testing.

You can see the final day of results for yourself in the video. The AUV is extremely steady when performing a wall following routine. The AUV is also able to perform rapid movements between set waypoints. In the video some ringing is observed, particularly when the AUV is commanded to do extreme pitches. Pitch is the most unstable DOF on the AUV. We hope with further tuning we might improve the control, but the aim of the experiment was about getting the software working talking within the larger system correctly rather than absolute performance.

The Pandora Gallery