Monthly archive - January 2014

Testing planning capabilities with Girona 500 AUV

Researchers from KCL visited UdG between the 17th and 24th of January, successfully completing work on integrating the controllers of the valve turning scenario into the planning architecture. This involved running the scenario many times during the week, with the Girona 500 AUV.

The scenario begins with a panel, hidden somewhere in the sparsely decorated pool. The AUV is given a set of coordinates at which the panel might be. The planner directs the AUV to search for the panel, move close to inspect the valves, detect their orientation, and finally to turn the valves to the correct configuration.

The architecture was modeled to be robust — replanning when new information is discovered, or the environment does not meet expectations. This means that when the valves do not turn as expected, the Girona 500 AUV would try again and again, grasping persistently with its end effector.

KCL + UdG Teams

During the week, the two teams met to decide how their collaboration should continue. The next steps will integrate planning with the chain cleaning scenario; further improve the valve turning scenario; and combine both to form a longer, more elaborate mission.

IIT and UdG work with new capabilities to perform a robust valve Turning

From the 28th of November to the 5th of December, researchers from Istituto Italiano di Tecnologia (IIT) came to the University of Girona (UdG) to do different tests to develop a successful valve turning.

NTUA, IIT and UdG  working at the CIRS facilities.

NTUA, IIT and UdG working at the CIRS facilities.

During this short period of time the two teams have worked together in two different tasks: First, the integration and testing of the new end-effector. Second, testing the Reactive Fuzzy Decision Maker (RFDM) to evaluate the safety of the valve turning.

New end-effector designed to improve the quality of the grasping and equipped with a camera in hand and a Force Torque sensor.

New end-effector designed for the valve turning.

The new end-effector has been designed in three different parts: First the shape of the passive gripper to grasp the valve handle, second a camera installed inside the center of the end-effector to see the manipulated elementa and third a Force/Torque sensor to evaluate the quality of the grasping and the torque needed to turn the valve.

Valve turning scenario  with the perturbation system installed

Valve turning scenario with the perturbation system installed

An external thruster has been install in the valve turning scenario in order to add perturbations during the manipulation task. The perturbations effect the valve turning and thus allow to detect the parameters to evaluate the safety. Furthermore, the communication between the RFDM and the Learning by Demonstration reproductor has been tested.